Math 3280 A 22-10-06

Review

- Cumulative distributions

$$
F_{x}(b)=p\{X \leqslant b\}, b \in \mathbb{R}
$$

F_{x} is non-decreasing, right cts, $\lim _{b \rightarrow+\infty} F_{x}(b)=1, \lim _{b \rightarrow-\infty} F_{x}(b)=0$

$$
p\{x=b\}=F_{x}(b)-F_{x}(b-) .
$$

- Continuous r.v.'s.
X is said to be (absolutely) continuous if $\exists a$ nonnegative function on \mathbb{R} such that

$$
P\{x \in B\}=\int_{B} f(x) d x
$$

for any "measurable" set $B \subset \mathbb{R}$.
The function f is called the probability density function of X, or simply pdf of X.

Remark: In the continuous care.

$$
P\{X=a\}=0 \quad \text { for any } a \in \mathbb{R} .
$$

Hence $P\{a \leqslant X \leqslant b\}=P\{a<X \leqslant b\}=P\{a \leqslant X<b\}=P\{a<X<b\}$.

Exer. 1. Suppose $X \underset{-x}{ }$ has a $P \cdot d f$

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{\frac{-x}{100}} & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

(1) Find the value of λ.
(2) Find $P\{X>100\}$.

Solution:

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f(x) d x \\
& =\int_{0}^{\infty} \lambda e^{-\frac{x}{100}} d x \\
& =\left.\lambda \cdot\left(-100 \cdot e^{-\frac{x}{100}}\right)\right|_{0} ^{\infty} \\
& =\lambda \cdot 100
\end{aligned}
$$

Hence $\lambda=\frac{1}{100}$.

$$
\begin{aligned}
P\{X>100\} & =\int_{100}^{+\infty} f(x) d x \\
& =\int_{100}^{+\infty} \frac{1}{100} e^{-\frac{x}{100}} d x \\
& =-e^{-\left.\frac{x}{100}\right|_{100} ^{\infty}} \\
& =e^{-1}
\end{aligned}
$$

§5.2 Expectation of a cts. r.u.
Recall that the expectation of a discrete r.u. X is defined by

$$
E[X]=\sum \quad x P\{X=x\}
$$

where the summation is taken over all the possible values that X can take on.

We can not directly use this method to define the expectation of a cts ru., since in the cts case, X will take on uncountably diff values, and moreover.

$$
P\{X=x\}=0 \text { for all } x \in \mathbb{R} \text {. }
$$

Def. Let X be a cts riv. with pdf f. Then we define

$$
E[x]=\int_{-\infty}^{\infty} x f(x) d x .
$$

Intuitive idea:
In the continuous care, we make a partition of $(-\infty, \infty)$ by $\left(x_{n}\right)_{n=-\infty}^{\infty}$ such that

$$
x_{n+1}-x_{n}=\Delta x .
$$

Then

$$
\begin{aligned}
& \sum_{n} x_{n} \cdot P\left\{x_{n}<X \leqslant x_{n+1}\right\} \\
&= \sum_{n} x_{n} \int_{x_{n}}^{x_{n}+\Delta x} f(x) d x \\
& \approx \sum_{n} x_{n} f\left(x_{n}\right) \cdot \Delta x \rightarrow \int_{-\infty}^{\infty} x f(x) d x \\
& \text { as } \Delta x \rightarrow 0 .
\end{aligned}
$$

Example 2. $\quad X$ is said to be uniformly distributed on $[0,1]$ if it has the following' density

$$
f(x)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Find $E[X]$.

Solution:

$$
\begin{aligned}
E[x] & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{1} x \cdot 1 d x \\
& =\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
\end{aligned}
$$

Below we consider the expectation of functions of cts r.u.'s.

Prop 3. Let X be a cts riv. with density f.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$. Then

$$
E[g(x)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

We prove the above prop only in the case that $g \geq 0$.

To this end, we first prove the following.
Lem 4. Let Y be a non-negative cts ru. Then

$$
E[Y]=\int_{0}^{\infty} P\{Y>y\} d y
$$

To prove Lem 4, we need to use the following result:

$$
\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d x\right) d y=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d y\right) d x
$$

when f is non-negative. This is a special version of the Fubini Theorem.

Pf of Lem 4. Let f be the density of Y.
Since Y is nonnegative, $f(x)=0$ for $x \leqslant 0$.
So $E[Y]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} x f(x) d x$. Observe

$$
\begin{aligned}
\int_{0}^{\infty} & P\{Y>y\} d y \\
& =\int_{0}^{\infty}\left(\int_{y}^{\infty} f(x) d x\right) d y \\
& =\int_{0}^{\infty}\left(\int_{y}^{\infty} 1 \cdot f(x) d x+\int_{0}^{y} 0 \cdot f(x) d x\right) d y \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} g(x, y) f(x) d x\right) d y
\end{aligned}
$$

(where $g:(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
g(x, y)=\left\{\begin{array}{lll}
1 & \text { if } & x>y \\
0 & \text { if } & x \leqslant y
\end{array}\right)
$$

$$
\begin{aligned}
& \stackrel{\text { Fubini }}{=} \int_{0}^{\infty}\left(\int_{0}^{\infty} g(x, y) f(x) d y\right) d x \\
& =\int_{0}^{\infty} f(x)\left(\int_{0}^{\infty} g(x, y) d y\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\infty} f(x)\left(\int_{0}^{x} 1 d y+\int_{x}^{\infty} 0 d y\right) d x \\
& =\int_{0}^{\infty} x f(x) d x \\
& =E[Y] .
\end{aligned}
$$

Proof of Prop. 3: By Lem 4,

$$
E[g(X)]=\int_{0}^{\infty} p\{g(X)>y\} d y
$$

White $B:=\{x \in \mathbb{R}: g(x)>y\}$. Then

$$
P\{g(x)>y\}=p\{x \in B\}=\int_{B} f(x) d x=\int_{\{x: g(x)>y\}} f(x) d x \text {. }
$$

Hence

$$
\begin{aligned}
E[g(X)] & =\int_{0}^{\infty} \int_{\{x: g(x)>y\}} f(x) d x d y \\
& =\int_{0}^{\infty}\left(\int_{-\infty}^{\infty} h(x, y) \quad f(x) d x\right) d y
\end{aligned}
$$

where $h(x, y)= \begin{cases}1 & \text { if } g(x)>y \\ 0 & \text { othercisie. }\end{cases}$

So by the Fubini Thm,

$$
\begin{aligned}
E[g(x)] & =\int_{-\infty}^{\infty}\left(\int_{0}^{\infty} h(x, y) f(x) d y\right) d x \\
& =\int_{-\infty}^{\infty} f(x)\left(\int_{0}^{\infty} h(x, y) d y\right) d x \\
& =\int_{-\infty}^{\infty} f(x)\left(\int_{0}^{g(x)} h(x, y) d y+\int_{g(x)}^{\infty} h(x, y) d y\right) \\
& =\int_{-\infty}^{\infty} f(x)\left(\int_{0}^{g(x)} 1 d y+\int_{g(x)}^{\infty} 0 d y\right) d x \\
& =\int_{-\infty}^{\infty} f(x) g(x) d x .
\end{aligned}
$$

